Introducing Zeus-mp: a 3d, Parallel, Multiphysics Code for Astrophysical Fluid Dynamics
نویسنده
چکیده
We describe ZEUS-MP: a Multi-Physics, Massively-Parallel, Message-Passing code for astrophysical fluid dynamics simulations in 3 dimensions. ZEUS-MP is a follow-on to the sequential ZEUS-2D and ZEUS-3D codes developed and disseminated by the Laboratory for Computational Astrophysics (lca.ncsa.uiuc.edu) at NCSA. V1.0 released 1/1/2000 includes the following physics modules: ideal hydrodynamics, ideal MHD, and self-gravity. Future releases will include flux-limited radiation diffusion, thermal heat conduction, two-temperature plasma, and heating and cooling functions. The covariant equations are cast on a moving Eulerian grid with Cartesian, cylindrical, and spherical polar coordinates currently supported. Parallelization is done by domain decomposition and implemented in F77 and MPI. The code is portable across a wide range of platforms from networks of workstations to massively parallel processors. Some parallel performance results are presented as well as an application to turbulent star formation.
منابع مشابه
Evaluation of two lattice Boltzmann methods for fluid flow simulation in a stirred tank
In the present study, commonly used weakly compressible lattice Boltzmann method and Guo incompressible lattice Boltzmann method have been used to simulate fluid flow in a stirred tank. For this purpose a 3D Parallel code has been developed in the framework of the lattice Boltzmann method. This program has been used for simulation of flow at different geometries such as 2D channel fluid flow an...
متن کاملParallel Adaptive Cartesian Upwind Methods for Shock-Driven Multiphysics Simulation
The multiphysics fluid-structure interaction simulation of shock-loaded thin-walled structures requires the dynamic coupling of a shock-capturing flow solver to a solid mechanics solver for large deformations. By combining a Cartesian embedded boundary approach with dynamic mesh adaptation a generic software framework for such flow solvers has been constructed that allows easy exchange of the s...
متن کاملMechanical System Modelling of Robot Dynamics Using a Mass/Pulley Model
The well-known electro-mechanical analogy that equates current, voltage, resistance, inductance and capacitance to force, velocity, damping, spring constant and mass has a shortcoming in that mass can only be used to simulate a capacitor which has one terminal connected to ground. A new model that was previously proposed by the authors that combines a mass with a pulley (MP) is shown to simulat...
متن کاملWork supported in part by US Department of Energy contract DE-AC02-76SF00515. YT: A MULTI-CODE ANALYSIS TOOLKIT FOR ASTROPHYSICAL SIMULATION DATA
The analysis of complex multiphysics astrophysical simulations presents a unique and rapidly growing set of challenges: reproducibility, parallelization, and vast increases in data size and complexity chief among them. In order to meet these challenges, and in order to open up new avenues for collaboration between users of multiple simulation platforms, we present yt, an open source, communityd...
متن کاملParallel multiphysics simulations of charged particles in microfluidic flows
The article describes parallel multiphysics simulations of charged particles in microfluidic flows with the waLBerla framework. To this end, three physical effects are coupled: rigid body dynamics, fluid flow modelled by a lattice Boltzmann algorithm, and electric potentials represented by a finite volume discretisation. For solving the finite volume discretisation for the electrostatic forces,...
متن کامل